यदि सदिश $\overrightarrow{ A }=\cos \omega \hat{ t }+\sin \omega \hat{ j }$ तथा सदिश $\overrightarrow{ B }=\cos \frac{\omega t }{2} \hat{ i }+\sin \frac{\omega t }{2} \hat{ j }$ समय के फलन है, तो $t$ का मान क्या होगा जिस पर ये सदिश परस्पर लंबकोणि होगी ?
$t=0$
$t=$$\;\frac{\pi }{{4\omega }}$
$t=$$\;\frac{\pi }{{2\omega }}$
$t=$$\;\frac{\pi }{\omega }$
$t =0$ क्षण पर कोई कण मूल बिंदु से $5.0 \hat{ i }\; m / s$ के वेग से चलना शुरू करता है । $x-y$ समतल में उस पर एक ऐसा बल लगता है जो उसमें एकसमान त्वरण $(3.0 \hat{ i }+2.0 \hat{ j })\; m / s ^{2}$ उत्पन्न करता है ।
$(a)$ जिस क्षण पर कण का $x$ निर्दशांक $84\, m$ हो उस क्षण उसका $y$ निर्दशांक कितना होगा ?
$(b)$ इस क्षण कण की चाल क्या होगी ?
एक कण $x$-अक्ष पर इस प्रकार चल रहा है कि इसका समय $'t'$ के साथ $x$ निर्देशक (coordinate) का मान $x ( t )=10+8 t -3 t ^{2}$ है। एक दूसरा कण $y$-अक्ष पर चल रहा है और इसका $y$ निर्देशक $y ( t )=5-8 t ^{3}$ द्वारा दिया जाता है। यदि $t =1\, s$ पर पहले कण के सापेक्ष दूसरे कण की गति $\sqrt{v}$ हो, तो $v$ का मान $( m / s$ में) है।
किसी बड़े व खुले हुए स्थान पर किसी कण का यात्रा पथ चित्र में प्रदर्शित है। कण की स्थिति $A$ के निर्देशांक $(0,2)$ हैं। उस अन्य बिन्दु के निर्देशांक, जहाँ पर तात्क्षणिक वेग व औसत वेग समान हैं, होंगे